Installation Guide
Quick Install
Requirements: Python 3.12 or higher, CUDA-capable GPU
BLISS is pip installable:
pip install bliss-toolkit
Developer Installation
Install poetry:
curl -sSL https://install.python-poetry.org | python3 - poetry config virtualenvs.in-project true
Install the fftw library (used by GalSim):
sudo apt-get install libfftw3-dev
Install git-lfs if you haven’t already:
git-lfs install
Clone the repo and install dependencies:
git clone git@github.com:prob-ml/bliss.git cd bliss poetry install
Verify installation by running tests:
pytest pytest --gpu
(Optional) Install pre-commit hooks for development:
pre-commit install
GPU Requirements
BLISS requires a CUDA-capable GPU for training. Check your CUDA version with:
nvidia-smi
BLISS uses PyTorch with CUDA 12.8 support, which works on both older GPUs (RTX 2080 Ti) and newer architectures.
Core Dependencies
BLISS requires the following core packages:
PyTorch (>=2.7.0): Deep learning framework
PyTorch Lightning (>=2.3.3): Training infrastructure
Hydra (>=1.0.4): Configuration management
GalSim (>=2.4.10): Galaxy image simulation
Astropy (>=6.1.1): Astronomical utilities
NumPy, SciPy, Matplotlib: Scientific computing
Optional Dependencies
For specific use cases, you may need additional packages:
Weak Lensing Analysis:
pip install healpy
Galaxy Clustering:
pip install h5py pyarrow
Photo-z Estimation:
pip install scikit-learn
Visualization:
pip install plotly seaborn
TensorBoard Logging:
pip install tensorboard
All optional dependencies are included in the development installation (poetry install).
Troubleshooting
GalSim installation fails:
Ensure FFTW is installed:
sudo apt-get install libfftw3-dev # Ubuntu/Debian
brew install fftw # macOS
CUDA not found:
Verify your CUDA installation:
nvcc --version
nvidia-smi
Memory errors during training:
Reduce batch size in configuration:
bliss mode=train cached_simulator.batch_size=8